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Abstract
The common-anion II–VI semiconductor superlattices (SLs) are characterized
by a vanishing or a small valence-band offset (VBO). In the case of the
lattice-mismatched SLs, the biaxial strain can drastically affect the splitting
of the valence-band top states, and therefore be explored in designing type-I
character SLs. In the present work, we used the sp3s∗ tight-binding method,
with the inclusion of strain and spin–orbit coupling effects, to investigate the
electronic band structures of the strained CdTe/ZnTe(001) SLs versus the biaxial
strain, layer thicknesses and VBO. Our results show that the electron is always
confined within the CdTe slabs, whereas the hole behaviour controls the whole
SL character. Our theoretical results are compared to the photoluminescence
experiments and shown to be consistent with the strain morphology along
the SL growth direction as well as the optical and structural qualities of the
experimental samples.

1. Introduction

Recently, there has been a prominent growing interest in the II–VI semiconductor
heterostructures because of their unique optical and electrical properties [1]. These compound
semiconductors have a very wide variety of bandgap values (mostly direct) ranging from zero
of the semimetal HgTe to 3.7 eV of ZnS. Moreover, the progress in the novel growth techniques,
such as the development of the flow-rate modulated beam epitaxy, has made it possible to grow
high-quality semiconductor heterostructures even from heavily lattice-mismatched materials,
up to 7%, if the strained slabs are kept sufficiently thin. Besides the standard effects of bulk
band discontinuity and slab thicknesses, the strain has indeed added a new degree of freedom
to the growth technology to be explored in tailoring the heterostructure’s bandgap.
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On the experimental side, strained-layer CdTe/ZnTe superlattices (SLs) have been grown
for the first time by Monfroy et al [2] using the molecular-beam epitaxy (MBE) technique.
This group characterized their samples by electron and x-ray diffraction and, despite the large
mismatch between CdTe and ZnTe (�a/a � 6.4%, named � hereafter), they claimed success
in growing SLs of high quality. Subsequently, other growth techniques, such as metal–organic
chemical vapour deposition (MOCVD) [3], have also been reliably used for successful growth
of the same kind of SLs. However, whatever the advances achieved in the growth conditions,
the misfit dislocations inevitably still occur in the experimental SLs as they are beyond the
control of the growth techniques, and the sources of the limitations are mainly due to the
elastic properties of the SL constituent materials. As a matter of fact, for any arbitrarily small
lattice mismatch (� � 0.3%) between the buffer and the overlayer, there always exists a
critical layer thickness dc beyond which the misfit dislocations appear in the sample. With
this aim, Miles and co-workers [4] have used photoluminescence (PL) and in situ reflection
high-energy electron diffraction (RHEED) measurement to draw a map of dc versus � for
the strained CdxZn1−x Te/CdyZn1−yTe common-anion SLs [4]. Many of these experiments
have demonstrated that the substrates do not play a crucial role in controlling the character of
the grown SLs, because due to the misfit dislocations the lattice constant jumps to that of a
free-standing SL structure. In fact, one of the aims of the present work is to investigate the
structural quality of the experimental SLs. This by itself is of essential importance as these
particular SLs have potential for applications to optoelectronics such as intense visible light
emitters.

On the theoretical side, several computational techniques have been used but were limited
either by the system size and applicability only to the ground state properties, as in the first
principles methods, or the complete neglect of the band mixing effects, as in the effective-
mass approach (based on the Kronig–Penney model) or the Hückel method. To overcome
such difficulties, we have used the sp3s∗ tight-binding (TB) method with inclusion of spin–
orbit interaction, which are crucially important in the case of II–VI materials. The TB method
has proven its reliability to successfully simulate the experimental data while it incorporates
the microscopic description of the material, where the point group symmetry of the system is
included. Within the Slater–Koster scheme [5], the TB method uses a small basis set of atomic
orbitals and this gives the method the ability to deal with large systems; meanwhile it takes
account of the band-mixing effects which are essential in the band structures of systems like
quantum dots, wires, SLs and quantum wells. Consistent with this, one of the striking features
of II–VI common-anion SLs is a vanishing or very small valence-band offset (VBO). This
makes the mixing of valence bands (VBs) essential and the interplay between the biaxial strain
and the vanishing VBO is of interest in its own right. Furthermore, it is worth mentioning
that, in zinc-blende bulk semiconductors, the VB maximum is located at the �-point and is
four-fold degenerate (including spin). Under the effect of biaxial strain as in the case of SLs,
this degeneracy is further lifted by splitting the heavy-hole (HH: MJ = ± 3

2 ) and the light-hole
(LH: MJ = ± 1

2 ) bands. Thus zero VBO in an unstrained case transforms into a finite VBO in
the strained case. Confinement and band-mixing effects may thus compete with strain effects.
Hence, the CdTe/ZnTe SLs should be a good condidate to follow the evolution of the electronic
structure as a function of the SL layer thicknesses, VBO and strain configuration.

For all the reasons mentioned above, we have employed the sp3s∗ TB method, with
inclusion of spin–orbit coupling and strain effects, to investigate the electronic properties of
the strained CdTe/ZnTe(001) SLs. It is worth mentioning, here, that in the literature several
attempts have been made to incorporate the strain effects within the TB Hamiltonian [6–
14]. More specifically in the case of mismatched SLs, the biaxial strain results mainly in
two structural distortions: (i) bond-length distortion and (ii) angular distortion. The former
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distortion is usually described by scaling the off-diagonal energy elements (i.e. the overlap
integrals) according to the famous Harrison 1/r2 rule, or another functional rule such as that
of Priester et al [15]. However, in the TB framework, this particular distorsion cannot lift the
degeneracy of the HH and LH states at the Brillouin-zone (BZ) centre (�-point), but it rather
shifts the band edges. On the other hand, the second distortion affects the bond-directional
cosines (l, m, n) which make the px , py and pz orbitals asymmetrically contribute to the TB
Hamilonian. As a consequence, in the presence of biaxial strain, the LH–HH degeneracy at the
�-point must be lifted [14] if the Hamiltonian is expressed in the Slater–Koster scheme [5] with
the minimal sp3 basis set and in neglect of spin–orbit interaction. A subsequent development
of this model is the addition of an excited s∗ state to this latter basis set by Vögl et al [16]. The
sp3s∗ models were essential especially for semiconductor materials, as they not only yield band
dispersions in good agreement with those obtained by the state-of-art methods but rather they
accurately reproduce the experimental bandgaps, carrier effectives masses and deformation
potentials [7, 16, 17]. Even prior to this work, Kobayashi et al [18] had proposed a TB scheme
which not only adds the s∗ orbital to the sp3-basis set but rather incorporates the idea [19] of
the inclusion of the spin–orbit interactions, which are crucially important in the case of II–
VI compound semiconductors. The overlap integrals, in this new ten-orbital/site-basis set, are
carried up only to nearest neighbours. We recall that the point-group symmetry of the unstrained
zinc-blende structure is Td and, in the presence of the spin–orbit interaction, the upper VBs
are formed by fourfold degenerate �8 states, |Eo

v2〉 = | 3
2 ,± 3

2 ; v〉 and |Eo
v1〉 = | 3

2 ,± 1
2 ; v〉

(usually labelled HHs and LHs respectively), and twofold degenerate �7 split-off (SO) states,
|Eo

v3〉 = | 1
2 ,± 1

2 ; v〉. However, in this latter model in the presence of biaxial strain, the LH–
HH degeneracy at the �-point cannot numerically be lifted because the directional cosines
(l, m, n) alter the Hamiltonian only through the phase shifts exp(ikr); and this latter factor
has a vanishing effect on the Hamiltonian at the �-point (k = 0). In an attempt to sort out this
problem, Priester et al [7] used a self-consistent TB technique where the diagonal elements are
variationally shifted along the growth direction as a consequence of charge redistribution due to
the strain effect. Other authors [10, 11] used a version of the surface Green-function matching
method adapted to strained SLs. They obtained that the splitting between LH and HH states
is linearly proportional to the strain. More recently, however, Bertho et al [9] proposed a new
scheme to incorporate the strain effects in the sp3s∗ TB Hamiltonian with the inclusion of the
spin–orbit interactions. They treated the strain as a perturbation posteriorly added to the TB
Hamiltonian (see next section for more details). As an effect of the reduced symmetry, in this
latter scheme, the perturbation takes care of the interaction between all the states which belong
to the same irreducible representations of the tetragonal point group D2d. The main result of
this work [9] is that the biaxial strain may cause the upper-conduction and valence interband
mixing which, in turn, induces a non-linear splitting of LH and HH states at the �-point. The
hydrostatic band mixing contributes to the non-linear behaviour of the band edges in high-
pressure experiments and is one of the reasons for the sublinear pressure dependence observed
for the fundamental bandgap Eg(P) in III–V and II–VI materials [9]. The mixing effect
demonstrates the complex hybridization mechanism of barrier-related and well-related states
for building resonant-state wavefunctions in SLs. This idea of strain-induced band mixing
has been corroborated by several experimental works. For instance, the evolution of the high-
energy part of the reflectivity spectra versus the uniaxial stress in the GaxIn1−x As/GaAs SLs
has been well interpreted using this new TB scheme [20]. The same model also yields an
HH–LH splitting variation with P in excellent agreement with the optical transitions of the PL
experiments [6–9, 21]. Finally, we mention that this method of incorporating the strain in the
TB Hamiltonian may exhibit electronic properties impossible to describe using the standard
envelope-function approach and the usual deformation potential theory.
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In this present work, we have adapted the same formalism [9] of incorporating the strain
within the sp3s∗ TB scheme in the presence of spin–orbit coupling. We calculated the band
structures of the CdTe/ZnTe(001) SLs versus the biaxial strain, layer thicknesses and VBO.
This paper is organized as follows: in section 2, within this scheme, we give a brief description
about the calculations of the electronic band structure and density of states. Section 3 illustrates
a detailed discussion of our obtained results. Special emphasis is given to the effect of VBO
on the electronic properties of SLs and, as applications, our results are compared to the PL
experiments. The last section summarizes our conclusions.

2. Computational details

Within the TB framework, with inclusion of spin–orbit coupling and absence of strain, the
electronic wavefunction is expressed in terms of a basis of symmetrically orthogonalized
atomic orbitals |b, µ,Ri〉, also called the Löwdin orbitals [22]. Here Ri denotes a Bravais
lattice point referred to the primitive cell, b is a basis atom in this primitive cell and µ denotes
an orbital (such as |s, 1

2 〉, |s,− 1
2 〉, . . . etc, which include the spin–orbit coupling) on atom b.

The Hamiltonian is usually expressed [18] in terms of a basis |b, µ,k〉, which is obtained via
a discrete Fourier transformation of the localized orbitals |b, µ,Ri〉, and given by

|b, µ,k〉 = 1√
Nw

∑
j

eikRj |b, µ,Rj〉 (1)

where Nw is the number of k-vectors taken either from within the irreducible wedge of the BZ
if the density of states is calculated, or along the high-symmetry lines if the band structure is
evaluated.

The Schrödinger equation, whose solutions are the Bloch functions |nk〉, is given by

(Ho − Enk)|nk〉 = 0 (2)

where Ho is the Hamiltonian of the system with inclusion of spin–orbit coupling. Equation (2)
can be expressed in terms of the Löwdin basis set as∑

j,ν

[〈i, µ,k|Ho| j, ν,k〉 − Enkδi, jδµ,ν]〈 j, ν,k|nk〉 = 0 (3)

where Enk is the eigen-energy corresponding to the eigen-function |nk〉, n is a band index,
i and j denote basis atoms and µ and ν denote orbitals on these latter respective atoms.
The Hamiltonian of either the bulk fcc or the SL structure uses the empirical TB parameters
given in table 1. The CdTe parameters are due to [18] whereas the ZnTe parameters are due
to [23]. These two respective sets of parameters yield the energy bandgap values of 1.59
and 2.39 eV, which are in excellent agreement with experimental values [24]. Moreover, the
band dispersions possess carrier effective masses and deformation potentials in compatible
agreement with experiments.

In the case of the presence of strain, such as in the SL structure, the strain is treated as
a pertubation posteriorly added to the Hamiltonian [9]. In order to make this present paper
self-contained, we briefly summarize the process of making this correction in the appendix.

One further remark about the heterostructure calculation is that the VBO is considered as
a constant, and added to the diagonal elements of the overlayer (i.e. to one of the two materials
in the case of SL structure; for instance added to the ZnTe slabs in our present case).

The obtained energy spectrum Enk and corresponding wavefunctions |n,k〉, from
equation (3), are used to calculate the following quantities:
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Table 1. The empirical sp3s∗ TB parameters, with inclusion of spin–orbit coupling, for CdTe and
ZnTe, in units of electron volts. The same notation as in [18] is used. The lattice constants (a0) are
in Å units.

Compound a0 Ea
s Ea

p Ec
s Ec

p 4Vss 4Vxx 4Vxy

CdTe 6.48 −8.891 0.915 −0.589 4.315 −4.779 2.355 4.124
ZnTe 6.08 −9.190 0.627 −1.420 3.779 −6.642 1.940 4.077

Compound 4V ac
sp 4V ac

ps Ea
s∗ Ec

s∗ 4V ac
s∗ p 4V ac

ps∗ λa λc

CdTe 1.739 −4.767 7.0 7.5 1.949 −2.649 0.367 0.013
ZnTe 5.925 −4.673 6.227 6.779 2.962 −3.827 0.362 0.027

(i) the total density of states (TDOS) given by

N(E) = 1

Nw

Nw∑
n,k

δ(E − Enk) (4)

(ii) the local density of states (LDOS), due to the orbital µ on the atom b, given by

Nb,µ(E) = 1

Nw

Nw∑
n,k

|〈b, µ,Ri|n,k〉|2δ(E − Enk) (5)

(iii) the partial density of states (PDOS), due to the atomic species of type α (such as Cd, Zn,
or Te atoms), given by

Nα(E) =
∑
b,µ

Nb,µ(E) (6)

where the sum runs over all the orbitals of all the sites of type α.
We emphasize that the k-space integration carried out in evaluating equations (4) and (5)

is performed using the Monkhorst–Pack technique [25], and the δ-function is numerically
approximated by a Gaussian:

δ(x) = 1

σ
√

2π
exp

[
− x2

2σ 2

]
(7)

of width σ = 0.05 eV. All of the TDOSs are normalized to ten electrons (i.e. one zinc-blende
molecule). The results of our calculations are presented in the next section.

3. Results and discussions

3.1. Fcc bulk bandstructure

In figures 1 and 2, we display the electronic band structures of bulk CdTe and bulk ZnTe
respectively. These results were obtained using the 20-band (sp3s∗ with inclusion of spin
degeneracy) model whose parameters are given in table 1. The top of the VB is chosen as an
energy reference. The energy gaps obtained are direct and of values Eg = 1.59 and 2.39 eV
for CdTe and ZnTe respectively, which are the same as the experimental values [24]. The
irreducible representations corresponding to the point-group symmetry of the eigenfunctions
are also shown in figures 1(a) and 2(a) for the high-symmetry points � and X of the BZ. In
both of these latter panels, the lowest group is dominated by contribution from the s orbitals
of anion (Te) atoms. The second group, which is the VB, consists of the cationic s states and
all the p states. For CdTe (figure 1), the VB and CB have bandwidths of values 5.3 and 7.2 eV
respectively, whereas the bandwidths of the VB and CB of ZnTe (figure 2) are 5.8 and 7.2 eV
respectively. Here, it is worth mentioning the following two quantitative trends.



7840 N Tit and A Al-Zarouni

Figure 1. The electronic structure of fcc bulk CdTe calculated using the sp3s∗ TB model, with the
inclusion of spin–orbit coupling: (a) the energy bands; (b) the density of states. The top of the VB
is taken as an energy reference and the DOS is normalized to ten electrons.

Figure 2. The same as figure 1, but for fcc bulk ZnTe.
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Figure 3. PDOS contributions from orbitals on (a) Cd atoms and (b) Te atoms to (c) the TDOS of
pure CdTe. TDOS is normalized to ten electrons.

(i) In general, as the lattice constant decreases, the VB width increases (compare figures 1(b)
and 2(b)). This can be ascribed to a reduction of hybridization with increasing separation
of the atomic constituents. Moreover, predominantly ionic materials have wider VB than
do predominantly covalent materials.

(ii) The other trend is that the optical gap in common-anion (or cation) semiconductors
decreases with the heavier cation (or anion).

The third group of bands,which form the conduction band (CB), are mainly due to contributions
from the p and s∗ orbitals.

In figure 3, we display the total and partial densities of states for CdTe, which more likely
would play the role of well in the SLs. Similar trends are observed for ZnTe. As can be seen
in panels 3(a) and (b), Cd and Te atoms experience the same point-group symmetry (Td) and,
as a consequence, they have very similar splittings and LDOS profiles. One also may notice
that the first group of bands consists mainly of Te atom contributions. Furthermore, Te atoms
contribute to the VB with a weight bigger than that of Cd atoms. These latter atoms contribute
more to the CB structure. This, indeed, reflects the fact that CdTe is a polar material with a
partial ionic character.

In figure 4, we decompose the TDOS into PDOSs due to (a) all the s∗ orbitals, (b) all the
s orbitals and (c) all the p orbitals. It is clear that the s∗ orbitals contribute only to the CB
and predominantly to the higher conduction bands. By taking the superposition of figures 3
and 4, it should be clearly seen that the first group is mainly due to the anionic s orbitals.
Furthermore, figure 4 shows that the VB and CB are due to an admixture of all s and p orbitals
in the hybridization process and, therefore, again reflect the covalent character of CdTe.
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Figure 4. Orbital density-of-states contributions from (a) s∗ orbitals, (b) s orbitals and (c) all the
p orbitals to the TDOS of pure bulk CdTe.

3.2. Strained bulk bandstructure

The purpose here is to put under the scope the strain effects as a component separated from the
global band offset problem. Of course, the biaxial strain significantly affects the level splittings
at the top of the VB. In this section, we aim to discuss the strain effects on the VBO in each of
the bulk materials under the same strained configuration corresponding to the structure of the
SL, eventually to be studied.

As mentioned in the last section, the strain has been treated as a perturbation posteriorly
added to the TB Hamiltonian. Besides this, the off-diagonal TB parameters have been scaled
according to Priester’s rule [15] in order to take account of the bond-length distorsion due to
the strain. The results for CdTe and ZnTe are shown in figures 5(a) and (b) respectively. The
calculation has used a tetragonal unit cell of four atoms whose in-plane lattice constant has
been varied from 6.08 Å (of cubic ZnTe) to 6.48 Å (of cubic CdTe). The inter-plane lattice
constant has been calculated using the macroscopic theory of elasticity (MTE) [24]. Since both
materials possess direct bandgaps, we have assessed the level splittings only at the �-point.
The energy reference has been taken to be the VB edge of either material in its unstrained
fcc-bulk structure.

Now, in the strained SLs, the biaxial strain is tensile for ZnTe and compressive for CdTe.
Figure 5 shows the variation of the energies of the top VB states (namely the spin-off (SO)
state represented by ◦, the HH state represented by ♦ and the LH state represented by �) and
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Figure 5. Energy variation of the lowest CB state and the top VB states (HH, LH and SO) under
the effect of the biaxial strain. (a) CdTe under compressive strain; (b) ZnTe under tensile strain.

the lowest CB state, denoted by �, versus the strain (i.e. the in-plane lattice constant a‖). The
Eg of CdTe seems to be insensitive under the compressive strain, contrarily to the Eg of ZnTe
which decreases under the tensile strain. This is consistent with the contrast in bandgaps which
we have drawn between figures 1 and 2. It seems to be a real fact that if the cation (or anion)
atom is substituted by a larger atom the Eg reduces. In the case of CdTe (figure 5(a)), the HH
lies above LH when a compressive strain is applied. On the other hand, the LH lies above
the HH when a tensile strain is applied on ZnTe (figure 5(b)). The maximum splitting energy
between HH and LH is 0.32 and 0.19 eV for CdTe and ZnTe respectively. The non-linearity
of the splitting is clearly seen in the behaviour of the SO state and does have experimental
evidence for it [26].

Another significant effect of the biaxial strain is that it alters the orbital character of the
electronic states and, therefore, affects the optical properties. The CB edge persists always in
being s-like and the HH state maintains equal strengths in px-like and py-like characters. In
contrast, the LH and SO states, with a varying admixture of p orbitals, undergo a substantial
change in the relative proportion of strengths as strain increases. For instance, the LH in the
strained CdTe becomes almost pz-like while the SO state becomes more px,y-like with very
small fraction of pz-like character. Thus, the strain has very significant effects on the spectral
properties of the VB edge states, as it changes substantially the orbital character.

3.3. Superlattice bandstructure

In the SL calculations, two assumptions are considered:

(i) the heterostructure is pseudomorphic (defect-free) and
(ii) the MTE is valid in predicting the SL atomic structure.

Therefore, despite the large lattice mismatch (∼6.4%), the thickness of each slab is assumed to
be below the critical thickness (dc) corresponding to the appearance of the misfit dislocations.
In real life, these latter inevitably occur in the experimental samples and will be the subject of
the next section.
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Figure 6. The variation of the energy gap of the (CdTe)n (ZnTe)n (001) SL versus n. Each panel
represents one biaxial strain state. Two extreme values of VBOs are considered for each panel.
The character of the SL is indicated by the shown symbols (see the text for details).

To map the strain effect, we have chosen to work on three differently strained SLs, two
among which are the ones extremely strained to either CdTe substrate (figure 6(a)) or ZnTe
substrate (figure 6(c)). The third one is the free-standing SL and is chosen as its strain state
lies in between (a) and (c) and, meanwhile, is of crucial importance for physical applications.
Of course, within the TB framework, to calculate the SL bandstructure, one must take into
account the band offsets. As mentioned in the last section, the VBO is considered as a constant
and added to the diagonal elements of the Hamiltonian matrix. Namely, we have added
VBO = Ev(ZnTe) − Ev(CdTe) to the on-site elements of the ZnTe slabs. Here, Ev is the
VB edge of the material, shown in brackets, under the strained configuration corresponding
to the SL structure. In figure 6, two extreme VBO values are considered for each strain state
and are displayed on each panel. As it is a well known fact that the II–VI common-anion SLs
possess vanishing or very small VBO, we took VBO = 0 as one of our choices. The second
VBO value, which is a kind of overestimate, is due to the model-solid approach of Van de
Walle [24]. To the best of our knowledge, all the VBOs found in the literature, lie in between
these two extremes. In addition to the strain state and the VBO, the third parameter controlling
the SL bandstructure is the slab thickness. In figure 6, we have chosen to investigate the
(CdTe)n(ZnTe)n(001) strained SLs, where both slabs have the same number of monolayers.
Since both materials possess direct bandgaps, we have just used the �-point to calculate the
energy gap (Eg) versus layer thickness (n). We found that the electron is always confined
within the CdTe slab. Hence, the SL character is fully determined by the hole behaviour. In
figure 6, for each specific strain state and specific VBO value, and particular slab thickness
(n), the SL is characterized by one of three symbols:

(i) the symbol � denotes the SL of type I, where the SL VB edge consists of the HH which
is confined in the CdTe slab;
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Figure 7. The calculated wavefunction squared amplitudes for the free-standing
(CdTe)10(ZnTe)10(001) SL using (a) VBO = 0 and (b) VB = −0.134 eV. Ec1 corresponds to
the lowest CB electron state, whereas Ev1, Ev2 and Ev3 correspond to the three highest VB hole
states.

(ii) the symbol × denotes the SL of type II, where the LH localized within the ZnTe slab
consists of the SLs VB edge;

(iii) the symbol of crossed � stands for an SL that is not well characterized as the VB-edge
hole is extended over the whole SL slabs.

As shown in the three panels of figure 6, the variation of strain causes the increase in the Eg

when the substrate lattice constant is reduced from that of CdTe to that of ZnTe. Furthermore,
the strain does have an effect on the character of the SL as it enhances the admixture of the px ,
py and pz orbitals as described in the previous section.

In figure 6(a), the VBO has a positive sign and, therefore, makes the VB edge of ZnTe
higher than that of CdTe. This yields an SL of type II, which seems to be more sensitive to the
variation of VBO especially for large n as the confinements of the electron and the hole are
completely independent. On the other hand, in figures 6(b) and (c), the VBO is negative and
yields an SL of type I. The SL Eg seems not to be too sensitive to the variation of VBO because
both the electron and the hole are localized in the CdTe slab and there exists a compromise in
their confinement characters. Now, we discuss the Eg versus n. Of course, it is evident that
the variation of Eg tends toward the Eg(CdTe) = 1.59 eV when n is very large as an effect
of confinement and this explains the reduction of Eg as n increases. For small values of n,
however, Eg seems to increase and has a maximum value when n = 2 then starts its decrease.
This may be interpreted as a strong band mixing occurring within the VBs.

In figure 7, we display the behaviours of the wavefunctions, calculated at the �-point,
corresponding to the electron and upper hole states of the CB and VB respectively. The
abscisa axis represents the c-direction of the SL, and the ordinate axis gives the variation of the
planar-averaged squared amplitude of the wavefunction. Figure 7 shows the results for a free-
standing (CdTe)n(ZnTe)n (001) SL, with n = 10, for two cases of VBO: (a) VBO = 0 eV, and
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Figure 8. Electronic band structures for the case of the free-standing (CdTe)10(ZnTe)10(001) SLs
calculated with (a) VBO = 0 and (b) VBO = −0.134 eV. In both panels, the SLs VB edge is taken
as an energy reference.

(b) VBO = −0.134 eV. Actually, these two cases correspond to two data points in figure 6(b).
It can clearly be seen that the electron (Ec1) is always localized within the CdTe slab. For
VBO = 0 the hole (Ev1) is delocalized along the whole SL, whereas for VBO = −0.134 the
top hole (HH) gets confined within the CdTe region and, therefore, yields a SL of type I. The
final remark about figure 7 is that the third hole state (Ev3) is found to have a tendency to
localize at the interface when VBO is vanishing. The same observation was also reported by
Quiroga et al [12] and just reflects the strong mixing effects occurring within the VBs.

Figure 8 displays the band structures of the two SLs previously discussed in figure 7,
which are the free-standing SLs with n = 10 and (a) VBO = 0 eV and (b) −0.134 eV. In
both, the SL valence bandedge is considered as an energy reference and the lowest CBs as
well as upper VBs are shown. The k-vector is varied along the Z� line and along one portion
of the �X line of the BZ. The Z� line is, effectively, sufficient to give a prediction about the
confinement state of charge carriers. It is obvious that the electron in both panels (a) and (b) is
localized with respect to the c-axis, as its conduction band is flat along the Z� line. The HH
state (H1) is also localized within CdTe when VBO = −0.134 eV and this is also shown by
the nesting H1 band in panel (b) along the Z� line.

Figure 9 presents the variation in energy of the two upper VB states, calculated at the
�-point, versus VBO. These results are shown for the free-standing (CdTe)10(ZnTe)10(001)
SL. We emphasize the following observations.

(i) For a free-standing SL made up of two semiconductor materials having the same number
of monolayers n, the in-plane lattice constant should be independent of n (a‖ = 6.238 Å).
The variation of n only changes the confinement energy.



The electronic properties of the strained CdTe/ZnTe(001) superlattices 7847

Figure 9. Variation of the two highest-energy VB states versus VBO, for the free-standing
(CdTe)10(ZnTe)10(001) SL.

(ii) For the considered range of VBOs, the electron is always localized within the CdTe slab.
(iii) H and L denote the nature of the SL states at the zone centre according to whether, mainly

or wholly, they originate from the bulk heavy- or light-hole states.

The valence states are strongly dependent on VBO. When VBO = 0, CdTe is the well material
for the HH state and the SL is of type I. For negative VBO values, the localization of the HH state
(H1) in CdTe layers increases and the bandgap is reduced. The LH state L1 remains extended
and lower than H1 in energy. The case of positive values of VBO presents more interesting
features and gives evidence for a SL type I to type II transition. The increase of VBO lowers
the barrier height for the HH which becomes extended in the whole SL and increases the
localization of the LH state, which becomes the SL hole ground state. So, VBO � 40 meV
appears as the value for which the transition occurs. For VBO > 40 meV, the LH state (L1)
lies above the HH state (H1) and the SL is of type II. The exciton transition becomes indirect
in real space with an expected weak oscillator strength [27].

3.4. Modelling of photoluminescence experiments

The first PL measurements, for the CdTe/ZnTe SLs, were reported by Miles et al [28]. The
grown SLs displayed intense visible PL spectra, which made the systems promising devices
for light sources and photo-detectors. As mentioned in the introduction, the same research
group [2] was the first to report a successful growth of high quality of the same type of
SLs. In their samples, CdTe layers varied in thickness between 20 and 49 Å, while ZnTe
barriers were between 20 and 51 Å wide. The SLs were grown on either (001)CdTe, ZnTe
or Cdx Zn1−xTe buffer layers. The experimental results of PL measurements (at 5 K) done
on various samples are summarized in table 2. On the other hand, in our computation, we
have assumed a pseudomorphic SL structure and used the MTE [24] to fit the experimental
structural data. Furthermore, the validity of MTE is assumed even in the ultimate limit of one
nominal strained monolayer. In our theoretical work, the VBO is taken as a free parameter
to be adjusted to yield the exact Eg as obtained in the PL experiments. The results of our
TB method, which includes spin–orbit coupling, are also summarized in table 2 for the sake
of comparison. We emphasize that these theoretical results correspond to the free-standing
SL case, and that the Eg values are much lower than experimental data if one took the same
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Table 2. The theoretical VBO, shown here, is for the case of the free-standing (CdTe)m (ZnTe)n (001)
SL and corresponds to exactly fitting the experimental Eg . Theoretically, the numbers of
monolayers m and n are determined using the MTE [24].

Sample Superlatticea (CdTe/ZnTe) (Å) Buffer layera Eg (eV)a,b VBO (meV)b

1 25/35 CdTe 1.87 6
2 28/21 CdTe 1.81 6
3 51/50 CdTe 1.69 86
4 27/30 ZnTe 1.81 46
5 21/30 Cd0.5Zn0.5Te 1.83 116
6 26/33 Cd0.5Zn0.5Te 1.82 41
7 34/36 Cd0.5Zn0.5Te 1.74 86
8 22/18 Cd0.5Zn0.5Te 1.78 176

a Experimental data due to [28].
b Present work.

Table 3. Same as table 2 but for the experimental data corresponding to [29] where the buffer is
ZnTe and the theoretical VBOs correspond to SLs of ZnTe substrate as well.

Sample Superlatticea (CdTe/ZnTe) (Å) Eg (eV)a,b VBO (meV)b

1 9/40 2.24 −84
2 12/40 2.15 −49
3 24/40 1.82 136
4 40/40 1.74 121

a Experimental data due to [29].
b Present work.

experimental buffer. Furthermore, the VBO has a reverse effect on the SL Eg (i.e. the SL Eg

reduces with the increase of VBO). Our theoretical results predicts that the top VB state is either
extended or an LH localized within the ZnTe slabs; and hence favours more the character of
SLs of type II. Therefore, it seems that the distribution of strain between CdTe and ZnTe layers
is difficult to modulate through the choice of substrate as the large lattice mismatch causes a
rapid relaxation and the lattice constant of the SL jumps into the one of a free-standing SL as
soon as the primary misfit dislocation appears. Obviously, the strain distribution (morphology)
plays a crucial role in determining the SL bandgap and character.

More recent PL experimental data are due to Kuwabara et al[29]. The CdTe/ZnTe strained-
layer SLs are grown on ZnTe buffer layer, using hot-wall epitaxy (HWE). The cross-sectional
transmission electron microscopy (TEM) image shows that the critical thickness of the CdTe
well layer is about dc � 12 Å. The experimental results of the picosecond time-resolved PL
spectra are shown in table 3. Our theoretical TB results are also shown for SLs strained to
ZnTe substrate for comparison. The VBO is varied to yield the same Eg as in the experimental
data. In table 3, the theoretical results show that the SLs 1 and 2 are of type I because their
corresponding VBO is less than the critical value of 30 meV (which is calculated for the case
of SLs strained to ZnTe substrate). The other SLs are of type II. This, indeed, is consistent
with TEM predictions [29] as the thickness of the CdTe well is less than the critical value dc in
the case of SLs 1 and 2. Hence, our TB results suggest that the strain is no longer confined in
the CdTe slabs in the case of samples 3 and 4. We emphasize, here, that this is not a problem
related to the growth technique but rather it is an intrinsic effect related to the elastic properties
of the SL constituents.
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4. Conclusions

We have used the sp3s∗ TB method, with inclusion of spin–orbit coupling, to investigate the
electronic properties of the strained CdTe/ZnTe(001) SLs. Within the TB scheme, we have
calculated the SL band structure and various densities of states versus the strain state, layer
thicknesses and band offsets.

Since the II–VI semiconductor heterostructures are expected to have either vanishing or
small VBOs, the biaxial strain plays an essential role in determining the SL character as it
controls the splittings of the top VB states. We have deconvoluted the band offset problem
into separable components. The first one we could separate is the biaxial strain effect. From
a computational point of view, within the TB framework, the strain has been treated as a
perturbation posteriorly added to the Hamiltonian. The results have shown that the top VB
state is HH-like for CdTe under compressive strain, and is LH-like for ZnTe under tensile strain.

In the calculation of the strained SLs, the electron is found to be always confined within
the CdTe slabs, whereas the hole is sensitive to the VBO, and its behaviour controls the SL’s
character. Since the SL constituents are of relatively large lattice mismatch (∼6.4%), misfit
dislocations inevitably can occur in the grown experimental samples. For this reason, we have
given special attention to the study of the free-standing SLs, which might be the limit case of
the relaxed SL structure. The free-standing (CdTe)n(ZnTe)n(001) SL is studied versus layer
thickness (n) and VBO. Two extreme values of VBO, which correspond to a vanishing value
and the one obtained using the model solid approach, are taken. The effect of n is shown
to only control the degree (energy) of confinement in the CdTe well. The variation of VBO
predicted the SL character to exhibit a type I to type II transition for a critical VBO value of
about 40 meV. For VBO < 40 meV, the HH is localized within the CdTe slabs and the SL is
of type I. However, if VBO > 40 meV, the LH localized within the ZnTe slab becomes the top
SL VB state and therefore the SL is of type II.

The results of our work have been shown to be useful in interpreting the PL data. Mainly,
they were used in determining the strain distribution and the SL character. Some valuable
information regarding the structural and optical qualities of the SLs have also been drawn.
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Appendix

In the framework of the sp3s∗ TB, with the inclusion of spin–orbit interaction, the biaxial strain
is incorporated into the Hamiltonian in a perturabative fashion as follows:

H = Ho + Hs(ε) (A.1)

where Ho is the sp3s∗ TB Hamiltonian which includes the spin–orbit coupling effects and
Hs(ε) is the strain part which will be posteriorly added as a perturbation to the system. In
this latter part, the interaction is switched on between eigenstates which belong to the same
irreducible representations at the BZ centre (�-point). As far as the lowest CB states and
the top VB states are concerned in the case of strained bulk material, the strain involves the
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Table A.1. Intraband and interband hydrostatic and uniaxial deformation potentials (in eV) for
both CdTe and ZnTe, due to [9].

Compound av a′
v acv a′

cv b b′ bcv b′
cv

CdTe 1.10 0.93 2.16 2.22 −1.20 −1.13 −2.47 −2.51
ZnTe 1.30 1.13 3.37 3.43 −1.20 −1.12 −3.11 −3.14

mixing between mainly six states (namely in figures 1(a) and 2(a): |Eo
v3〉 and |Eo

v1〉 with |Eo
v2〉

correspond to the SO and LH/HH states of the respective irreducible representations �7v and
�8v; whereas |Eo

c3〉 and |Eo
c1〉 with |Eo

c2〉 correspond to the upper CB states of the respective
irreducible representations �7c and �8c), which were obtained in the absence of strain.

For a biaxial strain, Hs can be linked with the deformation potential theory, and written
as follows:

|Eo
v2〉 |Eo

c2〉 |Eo
v1〉 |Eo

v3〉 |Eo
c1〉 |Eo

c3〉
〈Eo

v2|
〈Eo

c2 |
〈Eo

v1|
〈Eo

v3|
〈Eo

c1|
〈Eo

c3|




avTr(ε) − bεu acvTr(ε) − bcvεu 0 0 0 0

acvTr(ε) − bcvεu E ′
c − avTr(ε) + bεu 0 0 0 0

0 0 avTr(ε) + bεu −i
√

2b′εu acvTr(ε) + bcvεu −i
√

2b′
cvεu

0 0 i
√

2b′εu −�o + a′
vTr(ε) i

√
2b′

cvεu a′
cvTr(ε)

0 0 acvTr(ε) + bcvεu −i
√

2b′
cvεu E ′

c − avTr(ε) − bεu −i
√

2b′εu

0 0 i
√

2b′
cvεu a′

cvTr(ε) i
√

2b′εu E ′
o − a′

vTr(ε)




(A.2)

where ε is the strain tensor and εu = (ε‖ − ε⊥)/3; av (a′
v) is the intraband hydrostatic

deformation potential for the HH and LH states (the split-off states); acv is the interband
hydrostatic deformation potential coupling the HH states Ev2 (or LH states Ev1) to the
conduction states Ec2 (or Ec1); a′

cv is the interband hydrostatic deformation potential coupling
the split-off states Ev3 to the conduction states Ec3; bv (bc) describes the linear splitting of the
valence |Eo

v1〉 and |Eo
v2〉 states (of the conduction |Eo

c1〉 and |Eo
c2〉 states); within the TB model

b = bv = −bc; b′ is related to the mixing of |Eo
v1〉 with |Eo

v3〉 in the VB and of |Eo
c1〉 with

|Eo
c3〉 in the CB. bcv describes the upper-conduction–valence mixing of |Eo

v1〉 with |Eo
c1〉 states

and b′
cv is related to the upper-conduction–valence mixing of |Eo

v1〉 with |Eo
c3〉. We also recall

that the eigen-energies of the pure bulk lattice are given by

Eo
v1 = Eo

v2 = 0,

Eo
v3 = −�o = Ea

p − 2λa + Ec
p − 2λc

2
− 1

2

√
(Ea

p − 2λa − Ec
p + 2λc)2 + 4V 2

xx

Eo
c1 = Eo

c2 = E ′
c = E ′

o + �′
o = Ea

p + λa + Ec
p + λc

2
+

1

2

√
(Ea

p + λa − Ec
p − λc)2 + 4V 2

xx

Eo
c3 = E ′

o = Ea
p − 2λa + Ec

p − 2λc

2
+

1

2

√
(Ea

p − 2λa − Ec
p + 2λc)2 + 4V 2

xx

where Ea
p, Ec

p, λa , λc and Vxx are the TB parameters shown in table 1. The intraband and
interband deformation potentials for both CdTe and ZnTe are summarized in table A.1 and
they are due to the work by [9].
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